Virtualization Overview

Yao-Min Chen

The new look of computing

10/15/2010

Outline

Intro to Virtualization (V14n)
 V14n and Cloud Computing

V14n Technologies

What is Virtualization?

"Pretending"

- One thing pretends to be 2 or more things
- E.g., Linux and Windows on the same system
- "Sharing"
 - You don't really own it but use it as if you own
 - E.g., virtual memory
- "Multiple Personalities"
 - A different OS, or application, or infrastructure, depending on when and where you need it

Recent Gartner Report

- STAMFORD, Conn., September 27, 2010 More than 80 percent of enterprises now have a virtualization program or project, but only 25 percent of all server workloads will be in a virtual machine (VM) by year-end 2010
- Virtualization will continue as the highestimpact issue challenging infrastructure and operations through 2015

Virtualization now drives efficient IT from all angles, including data center design, platform updates, and application and infrastructure modernization, as well as traditional and new delivery models, such as infrastructure utility and cloud computing"

Why Virtualize?

Efficient sharing of resources

- Old problem: multi-user, multi-tasking
 - New problem: multi-core CPUs

Processor	Number of	Threads per	Total
	cores	core	threads
SPARC T3	16	8	128
Power7	8	4	32
Nehalem EX	8	2	16

More than just Cost Saving

- Faster deployments
- Reduced downtime
- Disaster recovery
- Usage accounting and chargeback
- Capacity planning
- Hosted virtual (thin client) desktops (HVDs)

Technology Enablers

- Hypervisors
 - VMware, Xen, KVM, Solaris Hypervisor, Hyper-V
- CPU
 - MMU enhancement Intel VT, AMD-V
 - IOMMU Intel VT-d, AMD-Vi
- Networking
 - Single Root I/O Virtualization (SR-IOV)
 - Virtual switching (vswitch)
- □ Storage
 - Network-attached storage (NAS)
 - Storage Area Networks (SAN)

Hypervisors

- Also known as VM Manager (VMM)
- Acquired the name from "supervisor"
 - Operating system is also known as "supervisor"
 - OS for v14n is thus called "hyper-supervisor," or just "hypervisor"
- Thin layer, providing arbitration between VMs and hardware, and task scheduling
- Repying on Dom0 VM and other guest VMs for hardware device drivers

CPU Virtualization Technology

AMD Virtualization (AMD-V)

- Originally known as Secure Virtual Machine (SVM)
- 2nd generation technology is called Rapid Virtualization Indexing (RVI)
- Intel Virtualization Technology (Intel VT)
 - Extended Page Table (EPT) is Intel's adoption of RVI

CPU Virtualization - IOMMU

- Input/output memory management unit
- Enables guest virtual machines to directly use peripheral devices
 - Ethernet, accelerated graphics cards, hard-drive controllers, etc
- Through DMA and interrupt remapping

Network Virtualization

□ SR-IOV

- PCI-SIG standard, which allows virtual functions (VF), such as queue pairs, to be created that share the resources of a physical function (PF)
- Primarily useful in allowing a single PCI device to be shared amongst multiple VMs

Virtual switch

- Virtual network switch connecting and exchanging traffic amongst VMs in a physical host
- Cisco Nexus 1000V, VMware vswitch, Open vSwitch

Storage Virtualization

- Storage is for persistent (nonvolatile) data
- Difficult to move or migrate if bundled with compute node
- Network-based storage is more suitable for cloud computing
 - Network-attached storage (NAS)
 - Storage Area Network (SAN)

Storage Types

Yrpe Virtual disk storage NFS servers are a common form of shared filesystem infrastructure, and can be used as a storage repository substrate for virtual disks. Location •••••••••••••••••••••••••••••				y - XenServer Poo	torage Repository - 3	New S	
Type NFS servers are a common form of shared filesystem infrastructure and can be used as a storage repository substrate for virtual disks. Location				of new storage	Choose the type of	ť	
 Windows File Sharing (CIFS) NFS ISO 	orage NFS servers are a common form of shared filesystem infr and can be used as a storage repository substrate for vi As NFS storage repositories are shared, the virtual disks them allow VMs to be started on any server in a resource be migrated between them using XenMotion. BA When you configure an NFS storage repository, you simp hostname or IP address of the NFS server and the path I that will be used to contain the storage repository. The P must be configured to export the specified path to all ser pool. e Sharing (CIFS)	NFS servers a and can be us As NFS stora them allow VI be migrated t When you co hostname or that will be us must be confi pool.	rage 51 A rageLink technology Sharing (CIFS)	Virtual disk NFS VHD Software Hardware Advance ISO library Windows NFS ISO		Type Location	

Storage V14n – Current State

- Rethinking volume and LUN-based rigid file systems
 - Once configured, it is hard to increase or decrease the "volume"
 - Consider your experience in resizing a Linux or Windows partition
- Scalable file systems
 - ZFS pools
 - Other "bytes" based file systems

V14n and Cloud Computing

Cloud Computing (C²)

- The term started when Google and IBM launched a university initiative to address Internet-scale computing back in 2007
- Services have been evolving since the 90s
- Previous incarnations include Grid and Utility computing and the Software as a Service a decade ago
- On-demand, self-service, pay-as-yougo utility
- Evolved from a combination of grid computing, *virtualization*, and automation

Money Talks

- According to Cloud Computing Journal article:
 - "Experts estimate that this industry will grow to a 42 billion dollar industry by 2012"
- What business owners and CIOs "think":
 - Shifting from Capex (capital expenditure) to Opex (operational expenditure)

Definition of C²

NIST defines cloud computing as

"a pay-per-use model for enabling available, convenient, on-demand network access to a shared pool of configurable computing resources (e.g., networks, servers, storage, applications, services) that can be rapidly provisioned and released with minimal management effort or service provider interaction"

C² Models

- Infrastructure as a Service (IaaS)
 Platform as a Service (PaaS)
- Software as a Service (SaaS)
- Hybrid variations

Infrastructure as a Service (IaaS)

- Provisioning of servers, storage, networking, OS, middleware, etc
 - E.g., EC2 (Amazon), Dynamic Infrastructures (Fujitsu), services from ISPs
- Subcategories
 - IaaS for workplace
 - IaaS for server
 - IaaS for storage
- Subscribers have control over selected portions of network
 - E.g. firewalls, OS, applications and storage

Platform as a Service (PaaS)

- Derivative of 70's Framework as a Service
- Provide services to support an application development life-cycle
 - e.g. AppEngine (Google) and Azure (Microsoft)
- Subscriber will use tools supplied by provider with no responsibility for cloud infrastructure (network, severs, OS and storage etc.)
- Locked into vendor's languages (Python, Java, Ruby, etc), tools and API

Software as a Service (SaaS)

- Applications running on a cloud infrastructure that can be accessed via a web browser interface.
- Started out as a service to companies who don't want to own SW (and the HW that runs it) in house
 - Salesforce.com as most famous example
- When ecosystem is formed, may expose internal platform and becomes PaaS
 - Force.com, Google

Software as a Service (Cont'd)

- Subcategories by application areas
 - CRM and business applications
 - Collaboration as a service
 - WebEx, GotoMeetings
 - Testing as a Service
 - Monitoring and management as a service
 - Development tools as a service
 - □ Force.com, Intuit
 - Security as a service
 - Qualys
 - Compliance and goverance as a service

Hybrid

IT as a Service

- Customized, packaged solutions provisioned to subscribers
- Cut cross multiple layers, from infrastructure to applications
- XYZ as a Service
 - Expense Report as a Service ③
 - You name it

Cloud in a Box

http://www.oracle. com/us/products/m iddleware/exalogic/ index.html □ 30 servers with 360 cores

- Networking and storage
- Virtual machine technologies
- Solaris and Linux guests
- JRockit and HotSpot JVMs
- WebLogic Java EE
- Coherence caching

C² Delivery Methods

Private Cloud

- A.k.a. Corporate Cloud
- Behind a corporate firewall
- Single tenant

Public Cloud

- Provided for lease external to an entity's physical location
- Multiple tenants

Hybrid Cloud

- Mixture of public and private
- E.g., nonconfidential data externally whilst keeping private data in-house

Managed Cloud

- Cloud physically located in house
- Managed by provider

C² Issues and Concerns

- Software licenses
- □ Single point of failure
- Portability
- □ Security
- Auditing
- Compliance
- Other data access

They mean research opportunities

C² Security

Intrusion/hacking

- Data piracy
- Privacy
- Multi-tenant issue
- NSA Trusted Computing Initiative

C² and Virtualization

- Many aspects of C² rely on server virtualization to realize
 - On-demand rapid provisioning
 - Elasticity (bidirectional scalability)
 - Portability and mobility
 - Security and Isolation
- C² has virtualization as the core, along with vendor differentiators:
 - Automation
 - Management

Virtualization Technologies

And the players who own them

V14n Types

- According to where it happens
 - Desktop
 - VMWare
 - Server
 - ESX/ESXi/vSphere
 - **Xen**
 - **LDom**
 - Network
 - **Storage**

- According to technology
 - OS Virtualization (a.k.a., containers)
 - Solaris/OpenSolaris
 - SWSoft
 - Hardware Emulation (a.k.a., binary translation)
 - VMWare, QEMU/KVM
 - Para-virtualization
 - Xen, ESXi, Microsoft

V14n Benefits

- □ Improve CPU utilization
- Improve security and isolation
- □ Save power, cooling, and space
- Facilitate migration and performance scaling
- Support software patching and upgrading
- Support legacy application and multiple OS versions

Drivers of Server Virtualization

🗖 V14n 1.0

- CPU Utilization
- Workload Consolidation
- Energy efficiency, building cooling and footprint
- 🗖 V14n 2.0
 - Reliability
 - Security
 - Elasticity

Types of Server Virtualization

Full virtualization

- No modification to guest OS
 - Privileged instructions intercepted and translated by Hypervisor
- Para-virtualization
 - Modifications to guest OS
 - Reduced translations
 - Reuse of guest OS drivers

CPU Virtualization

- Multi-core technologies
- □ X86 hyper-threading
- □ Sparc chip multi-threading
- SMP architecture
- NUMA
- $\square P = N*S*C*T$
 - P = No. of virtual processors (CPUs)
 - N = No. of nodes
 - S = No. of sockets
 - C = No. of cores
 - T = No. of threads

CPU Resource Allocation

- Virtual processors form a processor pool
- Knapsack problem
 - Partition P virtual processors into K workloads (or M virtual machines)
 - Subject to memory, network and storage constraints
- Power efficiency
 - Only activate a subset of P
- High Availability
 - Multiple VMs for a workload (thus M > K)

Elasticity

Horizontal Scaling

- Scale up and down the virtual processors allocated for a workload
- Mobility
 - Live migration from one set of virtual processors to another set
 - Main challenge in how to copy memory content while the memory pages are being dirtied
 - Xen VM migration, VMware vMotion

Quality of Service (QoS)

- No real-world application runs at 100% CPU utilization
 - Delay becomes unbounded
- Challenge is to determine the "optimal" operational point
 - Synthetic workload (benchmarks) used for sizing does not capture the real-time dynamics
- QoS (e.g., transaction delay) of a server is monitored in real time
 - If QoS satisfied, then scale down resources
 - Else, scale up

QoS Monitoring

Welcome Further Discussions

- Email: yaominchen@gmail.com
- □ Skype: yaominchen
- LinkedIn: Yao-Min Chen